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Introduction 
In view of The National Science Foundation’s recent announcement entitled: Leadership-
Class System Acquisition - Creating a Petascale Computing Environment for Science and 
Engineering, which calls for deployment of a petascale computational facility capable of 
sustained scientific applications performance approaching a petaflop (1015 floating point 
operations per second) to solve scientific questions of  strategic importance by or around 
the year 2011, and because the time between now (2006) and then is not more than ample 
for scientists to prepare to use such a computer, a workshop entitled Petascale Computing 
in the Biological Sciences was organized and held at NSF headquarters on August 29th 
and 30th, 2006. The objectives of this workshop were to examine the opportunities for 
progress in the Biological Sciences that could be enabled by the petascale computational 
capability and to determine the steps necessary to ensure that this community is prepared 
to take advantage of such resources when they come on line. The workshop report is 
below, with a concise bullet list of recommendations provided first for ease of reference, 
and the more detailed analysis and findings that led to these recommendations follows.  

 
I. Recommendations 

The potential benefits of petascale computing to advance scientific discovery in biology, 
and to improve the health and welfare of U.S and world citizens, as identified in the 
analysis and findings below, are manifold. However, to achieve these benefits, several 
specific steps are required, both of the community of research scientists in biology and 
computer science that should advance relevant science investigations, and by funding 
agencies that should provide resources to carry out these science investigations.  The 
recommendations of this workshop, developed from the analysis and findings section are: 
 

• A portfolio of candidate petascale applications should be established, and 
development funding should be provided, for collaborative teams of 
biologists and computer scientists to prepare calculations that can both 
advance scientific discovery and run at petascale. As a community we need to 
assemble a portfolio of application classes on the path to petascale. We should not 
strive to make this a large, comprehensive portfolio at first, but rather seek to 
obtain high success by enabling a few strategic biology computations at petascale 
in the first few years of system availability, particularly to solve science problems 
of impact.  This set of workshop participants identify the following set of broad 
biology application areas as being inherently suitable for development to go to 
petascale, and have science impact, in the near term (it is not implied this list is 
exhaustive). Thus candidate applications may be considered from the following 
broad areas: 

• Biomolecular Structure Modeling (for example extending classical 
Molecular Dynamics calculations to account for quantum mechanical 
effects, multidimensional free energy surfaces, transition state ensembles) 

• Modeling Complex Biological Systems (for example developing models 
of cell and organ function) 

• Genomics (for example search calculations mapping phylogeny to 
ontogeny) 



• Customized Patient Care (for example computing drug interactions in 
the context of individual physiology and blood chemistry) 

• Ecological component of earth system modeling (for example adding 
plant cover to climate models)  

• Infectious disease modeling  (for example modeling of disease 
spreading and the likely impact of containment strategies) 

 
The reasoning used to identify these broad areas as suitable for petascale, as well 
specific instances of calculations from each suitable for petascale are further 
described below in the analysis and findings section. 

 
• Explicitly called out from the above bullet: projects to scale candidate biology 

calculations to petascale should be undertaken by collaborative teams of 
biologists and computer scientists. All the calculations identified in the analysis 
and findings section, even the relatively straight-forward ones, require work by 
both experts in the domain science and in the associated computer science, 
working together, to get ready for petascale. 

 
• Extending the above beyond the short-term: petascale community should be 

cultivated. To foster a growing interdisciplinary community of collaborating 
biologists and computer scientists we recommend organization of “summer 
institutes”, focused workshops for carrying these collaborations forward, and key 
training programs for next-generation interdisciplinary scientists in this field. 
These should be advertised widely to all agencies with funding/interest in 
computational biology including (beyond NSF) NIH, DOE, DARPA. Petascale 
application proposals should also be encouraged to propose “High-Performance 
Computational Biology postdocs”. 

 
• Suitable selection criteria should be applied in choosing which specific 

calculations and teams from the above areas to invest effort and money into 
for the purpose of enabling viable petascale applications (via several years of 
effort starting ASAP). 
We propose the following broad evaluation criteria:  

o Reward due to science impact 
o Strength and interdisciplinary nature of proposed team  
o Demonstrated plausibility for petascale (via reports from team initial 

feasibility studies) 
o Needed investment in algorithms and models (via reports from team initial 

feasibility studies) 
o Risk of failing to result in a viable petascale application  

We applied the first and last (risk versus reward) in identifying the broad 
application areas suitable for petascale in the first bullet. Further effort is required 
to evaluate teams and carry out feasibility studies—t his further effort should be 
supported by NSF and other relevant agencies by appropriate means.  
 



• Explicit from the above initial feasibility studies should be carried out ASAP. 
Collaborative teams should be formed to further assess the suitability of 
calculations, including from the broad areas of the first bullet, to achieve 
petascale. Performance studies should be generated showing where scaling 
bottlenecks are and strategies for working around these should be explored. To 
mitigate risk of failure, teams should not receive larger multi-year development 
funding before justifying further advancement via short (1 year or less) feasibility 
studies. 

 
• Innovative uses of a petascale computer should be cultivated. There is a 

danger that some other applications of petascale computing that are untested, but 
innovative and with potentially very high impact will be squeezed out early by the 
approach embodied in the above recommendations. To mitigate this danger we 
propose an additional specialized RFP with modest funding for assessment and 
development of “shallow end of the pool” research that is “High Reward/High 
Risk” and “High Reward/High Effort) 

 
• “Market segmentation” should be done. We do not believe it is the case all 

computational problems in biology are potentially petascale. At the same time, 
many biology applications may stress memory bandwidth, disk I/O rates, integer 
functional units, database query rates, in ways that traditional high performance 
computing, floating-point intensive (such as physics codes solving systems of 
PDES (partial differential equations) ) do not. There is a need and opportunity for 
the community to examine computational requirements of biology applications, 
and, in addition to identifying candidates for petascale, identify attributes that 
may be used to influence such programs as NSF OCI  
(Office of Cyberinfrastructure) “track 2” system procurements. The result could 
be a machine at less than petascale but well suited to the data-intensive 
applications of biology. 

 
• High-performance algorithm development should be supported. Many 

problems in biology are irregular in structure, significantly challenging to 
parallelize, and integer-based, using abstract data structures, all characteristics 
that are unlike traditional uses of supercomputers for regular, numerical 
computing.  As the biological sciences community is a relatively young user of 
parallel and high-performance computational resources, adequate support should 
be provided towards the design and optimization of algorithms for large-scale 
computational problems in the biological sciences. The result would be advances 
in algorithms and the early opportunity to include them in emerging petascale 
applications.  

 
• Software support and maintenance should be supported.  We emphasize the 

NSF-wide need to develop a model and paradigm for making software solutions 
robust, maintainable, and reusable. This likely requires staff support, as opposed 
to graduate student, software support (students can invent but should not be 
expected to harden and maintain software.) 



 
The NSF BIO and CISE directorates need to increase investment in people and 
software applications development commensurate with the outlay in funding for 
hardware from OCI to enable petascale computing. We recommend a Biological 
Petaflop Computing Initiative, on the model of NMI (NSF Middleware Initiative) 
to foster software development. A focus should be on specialized programs to 
capture the specific biology subfields for development in the context of petascale 
computing. There should be an emphasis on coupling and coarse-graining 
techniques to enable scaled-up coupled models. Very specifically, we recommend 
support of the scaling of molecular dynamics to the petascale level, but also to 
support the development of coarse grained techniques that, in themselves might 
not be petascale, but would add great biological discovery value to the petascale 
molecular dynamics calculations. There should be an RFP for BIO HPC/parallel 
algorithm development and this could be in collaboration with (beyond BIO), the 
NSF CISE and Nano directorates. 
 
BIO should explore inter or cross agency coordination to address funding for 
Application Services, libraries, runtime/programming environments needed at 
petascale. This is a need of biology applications at petascale, but the need is too 
large and general to be the sole responsibility of BIO to provide.    

 
• Storage and networking should be supported. It is recommended that NSF 

support national infrastructure for data-intensive applications from the biological 
sciences, including storage and database resources. For example, the CISE and 
DDDAS (Dynamic Data Driven Applications Systems) directorates and BIO 
could jointly support a solicitation in this area.  

 
The result of following these recommendations will, we believe, both enable a few early 
successes of petascale biology applications solving important science problems running 
on the petascale facility when it first becomes available, and enable the evolution of a 
balanced, robust, interdisciplinary, computational biological sciences community and 
infrastructure going forward. 
 

II. Analysis and findings 
 

The workshop was structured around the following broad questions: 
 

1. What are examples of important questions and conceptual challenges in the 
biological sciences that illustrate the potential impact to the biological sciences of 
access to a petascale computational facility? 

 
2. What strategies will ensure that the biology community is in position to take 

advantage of petascale computational capabilities? 
 



3. What resources are needed to get teams of biologists and computer scientists 
working together on petascale applications development, with the goal of having 
operational packages ready by 2011 when petascale resources will come on line? 

 
After a plenary session and keynote talks, we formed three parallel working groups to 
address each question, and then convened a final plenary session to seek consensus 
among the participants. 
 
The remainder of this report describes the findings of each working group, followed by a 
summary of recommendations based upon these findings. 
 
 
II.A. Petascale Applications 
 
This working group was tasked with identifying candidate petascale applications in 
biology. The focus included critical issues, outstanding challenges, and potential impact, 
as well as on scaling up existing applications to petascale, and on turning important 
questions and conceptual challenges into petascale applications.  
 
In the 50 years since the discovery of the structure of DNA, and with new techniques for 
sequencing the entire genome of organisms, biology is rapidly moving towards a data-
intensive, computational science. Many of the newly faced challenges require high-
performance computing, either due to the massive-parallelism required by the problem, 
or the difficult optimization problems that are often combinatoric and NP-hard.  Unlike 
the traditional uses of supercomputers for regular, numerical computing, many problems 
in biology are irregular in structure, significantly more challenging to parallelize, and 
integer-based using abstract data structures.  
 
In the large view, some candidate petascale calculations in biology are already extant as 
applications, some are even running at terascale (1012), while others exist only as 
abstractions, models, and (in some cases) algorithms for solving them.  For these latter 
conceptual problems, implementation is an issue; the quality of the implementation may 
be a larger factor than intrinsic suitability, or scientific importance, in determining their 
success at petascale. Even for the former cases (existing codes), there is no simple proof 
that either a) terascale applications will naturally scale to petascale, or that b) important 
science questions would be answered by so doing; rather, the suitability of each for 
scientific importance, scalability, and computational challenges, must be examined case 
by case. Still, in any case, validation is an issue. In many computational science 
problems, determining that a calculation is computing a result of high fidelity to nature 
and of scientific relevance, will be as or more difficult than implementing the application 
at petascale to begin with. 
 
With the above larger issues in mind, three guiding principles were used by this group to 
identify possible candidate petascale applications in the biosciences: 1) needs of the 
domain science are more important than simply enabling petaflop calculations 2) people 
are expensive, machines are cheap (or in other words software is expensive and hardware 



is relatively cheap), so designing, coding, porting, tuning, and validating applications will 
be at least as expensive as procuring petascale hardware, and as well are of utmost 
importance in this drive towards petascale computing.  Furthermore, a rather ideological 
position was taken by this working group, that being that 3) “nothing in biology scales to 
a petaflop, unless otherwise demonstrated or proven.” 
 
With these guiding principles in mind, candidate questions and conceptual challenges 
were identified and deemed potentially suited for petascale within the available time, 
given sufficient resources, early start, and ample time for success. These questions are 
listed below in rough order of deemed readiness/nearness deployment at petascale, with 
the most mature candidates listed first. In addition, for each category of application, some 
risk/reward assessment is provided. Risk is loosely defined here as risk of either 1) failing 
to be deployed at petascale (i.e. due to difficulty of implementation) within the 
timeframe, or 2) failing to compute a result of significant scientific merit, or both. 
Reward is of course the opposite i.e. 1) likelihood of running at petascale at “first light” if 
sufficient resources are devoted to software development, and 2) importance of the 
underlying problem to biologists, or both. 
  

• Biomolecular Modeling  (from structure to function) 
There is an opportunity for a petascale computational facility to enable calculations 
that extend current computational models of molecular structure and dynamics both 
in dimensions of detail per molecule and in dimensions of number of molecules that 
interact. Such enhanced detail should make it possible to explore phenomena, for 
example, where quantum dynamics and thermal motions interact to model accurately 
the mechanisms for essential biological function, such as electron and proton transfer. 
This should also allow electronic structure calculations essential for the next stage in 
force field improvement of classical molecular dynamics. Potentially then, 
calculations involving many more atoms and molecules interacting than is state-of-
the-art today could enable understanding of the assembly and function of larger 
molecules into complex molecular machines that include protein, RNA and 
membrane components and that could result in manifold practical benefits to areas 
such as drug design and understanding of the ageing process, while furthering 
fundamental understanding of biological processes. However, the path to this 
opportunity is not quite straightforward. 
 
It is considered relatively low risk to implement and scale an existing classical 
molecular dynamics code to petascale;  calculations using state-of-the-art codes today  
already simplify their models substantially just to make the computation tractable 
(e.g., doable on a terascale machine). Therefore, in principle, it straightforward to add 
more physics and chemistry to possibly increase relevancy of the simulated outcome. 
This is not to say that, in moving to petascale, that existing methods for calculating, 
for example, long range electrostatics, will not have to be rethought, possibly posing 
major algorithmic and software challenges. However, simply extending detailed 
molecular dynamics in this way may not alone be high reward for biologists in 
general; in the worst case, one would have the situation where a petascale calculation 
would be enabled that is not of wide community interest. Today, significant high end 



compute time for “biology” is used by the molecular dynamics community, but many 
biologists consider the results of that work, while interesting, much less significant 
than results generated from bioinformatics in their subfields.  On the other hand, if the 
atomically detailed classical molecular dynamics could be augmented by coarse-
grained models that are parameterized by the molecular dynamics output, extending 
all the scales of time and length and comprehensiveness of phase space sampling, 
then the results may become very significant for biology in general, and for physical 
biochemistry in particular.  
 
A prime class of problems for molecular dynamics/coarse-graining at the petascale is 
assembly and function of heterogeneous biological membranes.  The system sizes that 
are desirable to explore will challenge even petascale machines, and the biological 
issues are of major importance. A petascale calculation in this domain would involve 
systems say larger than one hundred million atoms and would capture how functions 
may manifest over unprecedented timescales.  
 
From the biological standpoint, studies of anomalies can often be as or more 
important than the related canonical results (for example protein misfolding is as 
interesting as protein folding), and could be the focus of early important petascale 
calculations. Models will out of necessity be multiscale and the implementation 
thereby typically hierarchical (system ensembles). Such implementations will pose 
particular computational challenges requiring dynamic load balancing, coarse-
graining, dealing with time-serialization, solvent models, electrostatics and the like, to 
enable efficient execution. Work must begin as soon as possible on these difficult 
implementation challenges to ensure success within the timeframe. 

 
Examples of extending Molecular dynamics calculations to address interesting 
questions in Biology 
Because many participants at the workshop agreed that large-scale molecular 
dynamics simulations as described above are the most likely candidates to achieve 
petascale performance, but that molecular dynamic by itself might not hold as wide of 
interest to many biologists, here in an expanded subsection, are some specific 
examples of applications in this domain that could be made to scale on a large 
fraction of the proposed machine with relatively modest effort for underlying 
algorithmic modification, while at the same time enabling interesting problems to be 
addressed by biologists.  
 
Example 1:  Quantum mechanics in biology.  
Considering that proteins are composed mostly of light (first or second–row) 
elements, nuclear quantization effects may be manifested significantly in these 
systems. The importance of these effects, especially in the context of biological 
proton transfer, has long been debated in the field of enzyme catalysis. It is an issue 
that deserves careful investigation; especially in the light of experimental findings 
(Cha, Y., Murray, C. J. & Klinman, J. P. (1989) Science 243, 1325-1330) suggesting 
that proton transfer in enzymes (e. g. bovine serum amine oxidase) may proceed 
through tunneling. Progress to date has been hindered by the unavailability of 



adequate computational resources. Nuclear quantum effects at finite temperature can 
be incorporated into ab initio molecular dynamics via the Feynman imaginary time 
path integral (PI) formulation of quantum statistical mechanics. It is, therefore, 
possible to investigate the influence of nuclear tunneling and zero point vibrations on 
finite-temperature equilibrium properties, while maintaining a first-principles 
description of the system. The PI methodology is well established, however, 
applications have been limited to proton transfer in bulk liquids, water wires and 
small water clusters due to the enormous computational requirements of the method. 
It can be expected that comprehensive path integral investigation for a handful of 
well-characterized systems (dihydrofolate reductase, carbonic anhydrase, 
triosephosphate isomerase) would become feasible if a petascale platform became 
available. For instance a MM/QM (Molecular Mechanics and Quantum Mechanics) 
model of the dihidrofolate reductase active site comprising 200-300 atoms in the QM 
subsystem, simulated with a sufficiently large basis set to ensure accuracy (~ 100 Ry 
cutoff), could scale (depending on the machine architecture and the chosen 
parallelization scheme) from several hundered to several thousand processors. The 
PIMD method maps the problem of a quantum particle into one of a classical ring 
polymer with beads that interact through spring forces. The bead discretization entails 
simulation of multiple replicas of the system and requires only very limited 
communication. Simulating 32 to 64 beads (to ensure convergence) would, thus, 
result in utilization of ~64,000 processors. This firmly positions such an application, 
if not in the petaflop, at least in the hundred-teraflop regime. The results could be of 
potentially great importance, as they would allow researchers to evaluate the 
applicability of a posteriori corrections for nuclear quantization, widely applied in 
computational work on enzyme catalysis today. (Note: The QM/MM module of Car-
Parrinello molecular dynamics (CPMD) at present is not fully compatible with the 
PIMD options. However, there is no conceptual obstacle to implementing this in the 
code.)   
 
Example 2:  Multidimensional free energy surfaces (FES) for enzymatic catalysis.  
As an attractive alternative to more established sampling methods such as blue moon 
ensemble/constrained dynamics or umbrella sampling, a very recent development in 
reactive CPMD has been introduced. The method is based on (i) metadynamics in the 
phase space defined by a reduced set of collective coordinates, (ii) coupling of the 
metadynamics to the real dynamics of the system through the Car Parrinello 
Lagrangian and (iii) the application of an adaptive biasing potential. In this approach, 
the reaction coordinate is discouraged to remain fluctuating around the local 
minimum of the reactant state, by adding a small Gaussian-shaped potential every 
few hundred dynamics steps. In this way, the reactant free energy well will be 
completely filled with Gaussians during the molecular dynamics run, allowing the 
system to escape the minimum via the lowest transition state to the next (product or 
intermediate) well. The free energy surface of the system, including the transition 
state regions, can be reconstructed from the sum of the accumulated Gaussians. The 
ability to trace independently more than one or two collective degrees of freedom 
allows for the study of concerted reactions – a capability, which is of great 
importance in the investigation of enzyme mechanisms. Furthermore, the method can 



be generalized to multiple-walker metadynamics. Just as in the previous example, the 
scalability of such computational scheme makes the method interesting from the point 
of view of potential petascale applications. The computational cost of sampling 
increases exponentially with the number of collective reaction coordinates making 
determination of multi-dimensional free energy surfaces in enzymatic catalysis an 
exceptionally challenging problem. To illustrate the point consider the enzyme uracyl 
DNA glycosylase (UDG) – a vital DNA repair protein, key for the maintenance of 
genomic integrity. It has been long debated whether the reaction mechanism is 
associative or dissociative. To distinguish between these mechanistic alternatives, at 
least two independent coordinates need to be considered (and a two-dimensional FES 
evaluated). Furthermore, if the role of initial strain in the active site needs to be 
addressed, which has been suggested as mechanistically important, one would have to 
consider the out-of-plane motion of the deoxyribose ring and add an extra coordinate 
(two-dimensional FES). Thus, increasing the dimensionality of the sampled phase 
space allows one to answer increasingly more complex questions about the system. 
As in the previous example, since a QM/MM model of the enzyme is expected to 
scale from 300 to more than 1000 processors and 100 independent walkers can be 
used to sample exhaustively the region of phase space of interest, it is likely that such 
an application could make efficient use of ~104 -105 processors.  
 
Example 3:  Transition path sampling applied to enzymatic catalysis and 
determination of transition state ensembles.  
Recent experimental work has unequivocally demonstrated the dynamic nature of 
enzyme catalysis at the single molecule level, leading to a distribution of free energy 
barriers for individual catalytic events. Therefore, to further understanding of 
catalytic processes, it is important to go beyond the single transition state picture. A 
more accurate description may be achieved by considering an ensemble of transition 
states evolving on a free energy landscape, dynamically transformed through 
conformational changes occurring on a variety of timescales. In this context, it may 
be more appropriate to describe the reactive processes in terms of ensembles of states 
associated with the transition region and reactant and product basins on the free 
energy surface. Such detailed description, based on the concept of dynamical path 
sampling, has been pioneered by Chandler and coworkers. The method, called 
transition path sampling (TPS), essentially amounts to importance sampling in the 
space of individual trajectories. A recent application to the problem of water 
autodissociation (Geissler, P. L., Dellago, C., Chandler, D., Hutter, J. & Parrinello, 
M. (2001) Science 291, 2121-2124) highlighted the extreme computational cost of 
transition path sampling. Using transition path sampling techniques to investigate the 
detailed mechanism and kinetics for select reaction steps in an enzymatic catalytic 
cycle would require orders of magnitude larger computational effort. In essence, the 
method consists of: (i) selecting an initial guess for a trajectory connecting the 
reactant and products states; (ii) generating new trajectories by randomly shifting the 
momenta (shooting moves) at an intermediate point of the initial path; (iii) acceptance 
or rejection of the newly generated paths based on a Metropolis criterion; (iv) 
repetition of the above steps until sufficient sampling is achieved. Sampling in 
trajectory space is especially computationally intensive due to the need to calculate 



multiple trajectories. Coupled to the significant computational expense of CPMD, 
problems proposed in such calculations can be classed as exceptionally difficult. To 
achieve an accurate representation of the TS ensemble for an enzymatic reaction, a 
few hundred trajectories may be needed. Assuming an ideal acceptance ratio of 0.5, 
up to 1000 short (1 to 2 ps) trajectories may have to be integrated forward and back in 
time bringing the potential processor count for the application once again into the 104 
-105 range. (Multiple trajectories may be computed simultaneously with no 
communication overhead). 
 
The key unifying feature of these examples, besides their focus on important 
biological problems, is the exploitation of multiple levels of parallelism, coupled to 
the large computational requirements of the ab initio molecular dynamics method.  
The support of such calculations  appears relatively low risk for achieving a petascale 
calculation in the appropriate timeframe and also relatively high reward for 
addressing interesting biology problems. 

 
• Modeling complex biological systems—From Cells to Organs (neuronal 

modeling, cardiovascular simulations, radiation transport, pathophysiology) 
At the next higher level in model size and complexity an opportunity exists for a 
petascale computational facility to enable modeling of unprecedented, large, 
macromolecular constructs at the cells and organs (e.g., the heart) level.   Such focus 
is considered by many to be the next level of grand challenge problems in 
computational biology, with many possible benefits to health and welfare, to say 
nothing of the ability to deepen our understanding of human and other life-form 
bodies. There is indeed little difficulty in actually posing such large calculations 
(even beyond petascale), however, there is substantially more risk for 
implementation, relative to the former bullet, particularly since the models are more 
complex to implement, not yet well established beyond limited cases, and the 
fundamental biology principles less well understood at this level. Petascale 
computations in this domain, for example a model of the human heart, could involve 
finite elements, possibly 1010 higher order, and would involve hybrid/stochastic 
computational methods.  
 
Likely, implementations would include multiscale/multiphysics models, Monte Carlo 
methods, reaction-diffusion in both intracellular and extracellular space, and/or circuit 
models. Additionally, in many applications, geometry is a major consideration. Due 
to the complexity and hybrid nature of these calculations, load-balancing and coarse 
graining will be even more difficult than described in the previous class above.  
 
As an example application: multiscale modeling of cardiac arhythmia - from ion 
transport to the organ level. At the organ level, one would need about 108 to 109 

degrees of freedom. This includes mixed domains, i.e. flow, structural and 
electrophysiology. One would also need long-term integration, about 100 cardiac 
cycles with 15,000 time steps. Based on current computational indices for such 
simulations, one can arrive at least a week of petascale computing to model an 
incident of arrhythmia. If one extends the model to include details of cellular 



dynamics (as for example in the MCELL code of Joel Stiles) and also NAMD type 
simulations for subcellular activity, then such calculations could require several 
weeks per episode modeled. 
 
Moving forward with calculations such as these, involving an organ performing some 
interesting “behavior”, and supporting that for further work to deploy at petascale, 
would be considered relatively medium risk for achieving a petascale calculation in 
the timeframe, as well as relatively medium reward for addressing interesting biology 
problems (lower reward because it could result in a “home run” for example by 
deepening understanding of the organ and potential for malfunctions, but also has the 
potential to result in a large scale calculation for low relevancy). 

 
• Genomics  
Genomics is a broad and growing area in biology. Only some of the associated 
calculations are potentially petascale however. We consider some that have potential 
in the following bullet list: 
 

o Genome and Metagenomic Correlations involve calculations on, for 
example, genomes of entire microbial communities. The science impact of 
such computations are somewhat debated within the biology community; 
however, they could be of very high reward if such computations pay off 
strongly in biological understanding. Such abilities lend themselves 
towards biological systems-level understanding. As well, such 
computations are, in principle, highly scalable, since they are based 
fundamentally on pairwise correlation, and thus representable by matrices.  
The challenge is in the data-intensiveness of the computation, and the size 
of the data stores, as exemplified by Genbank, is still doubling about every 
18 months. This is both a justification as well as a challenge for a 
petascale computing facility. Data intensity handled in a brute force way 
requires large memory, but memory is expensive and not becoming more 
available on the same curve as processing or the size of biological data 
stores. It is possible that the petascale facility will have no more memory 
per processor than today’s machines, but simply more processors.  The 
software engineering challenge is to handle memory more efficiently for 
data intensive applications—the hardware challenge is to provide 
sufficient globally addressable memory to permit scaling of such 
applications. These challenges are inherent in going to petascale and not 
unique to biology applications. 

 
o Genomics in the small includes possibly petascale calculations involving, 

for example, genotype Single Nucleotide Polymorphisms (SNP)-
phenotype modeling (50M SNPs x 1000 individuals x 50 phenotypes). 
What is unclear is whether or not such computations are in fact petascale, 
or instead require only terascale (or smaller) caliber resources. Further 
assessment is required to fully understand the computational size of these 
types of problems. Whole genome association studies, at the large-scale 



end, are currently about 300K SNPs, with 1K cases and 1K controls (NIH 
IC Director's Meeting Highlights, 28 April 2006).  Even at 3K X 2K, the 
problem is not very large.  Although the number of genotype markers may 
increase to something on the order of 3M, and the number of individuals 
phenotyped may increase on the order of 100K, the problem may not be of 
sufficient scale to warrant petsacale resources.  Furthermore, some of the 
current top statistical and machine learning algorithms take advantage of 
randomness to decrease variance and increase accuracy, primarily through 
re-sampling and sub-sampling techniques.  These algorithmic techniques 
not only improve analytical results, but reduce computational 
requirements (e.g., memory and processors). 
 
Supporting development of techniques such as these to scale up genomics 
for deployment at petascale, appears relatively high risk for achieving 
success in the given time frame.  It is not clear that the required globally 
addressable memory, or the associated data handling infrastructure 
required, much less the data mining algorithms to support it, would be 
available on the petascale facility at “first light.”  Although such 
computations are of potentially high reward for addressing interesting 
biological problems, and appropriate for petascale facilities in terms of 
their ability to stress infrastructure for data, it is not fully evident that this 
area can fully exploit petascale architectures. It may indeed need a 
different kind of architecture that better supports data intensive 
applications. 

 
o Genome-wide association (cell division, genotype-phenotype 

association) provides an opportunity for a petascale computational facility 
to enable unprecedented, deep and wide, mining of genotype and 
phenotype data to establish association.  Generation of massive amounts 
of genomic data is at an unprecedented level, however, the implications 
and significance of genetic codes is mostly still unknown. The possibilities 
for petascale computation to enable a renaissance of biocomputing by 
enabling data-mining at a scale required to map genomic codes to 
organism physiology and behaviors, is still unclear. A candidate 
calculation would follow a data, to model, to knowledge, cycle of 
development. However, algorithms and models in this arena are ill-
understood at present, and, working through issues of data federation and 
availability would be critical to success. So while the sizes of interesting 
problems in this domain are clearly petascale or larger, further assessment 
is required to ensure that concrete and tractable implementations can be 
arrived at within the given time frame. The solution space for even 
moderate phylogenetic reconstruction problems is extremely large (i.e., 
making even petascale seem extremely small). However, the 
computational bottlenecks using some of the latest best programs for large 
problems (e.g., GARLI, RAxML), provide some obvious places where 
petascale computing could be of significant benefit. Current best analytical 



approaches in this domain use maximum likelihood or Bayesian methods.  
The computational step that dominates the processing required for these 
methods is calculation of likelihood values.  These likelihood values can 
be done in parallel (and several existing programs do this in a limited 
way). Petascale computing could greatly increase the opportunity for 
parallelization of the likelihood calculations. Other algorithmic approaches 
shown to be advantageous in current practice are genetic algorithms and 
Markov chain Monte Carlo. Although current implementations of these 
methods would have to be changed and adapted to the purpose, both are 
intrinsically parallel  and so could  potentially be significantly scaled up to 
enable petascale likelihood calculations. Algorithms for solving problems 
from computational biology often require parallel processing techniques 
due to the data- and compute-intensive nature of the computations. Many 
problems use polynomial time algorithms (e.g., all-to-all comparisons) but 
have long running times due to the large number of items in the input; for 
example, the assembly of an entire genome or the all-to-all comparison of 
gene sequence data.  Other problems are compute-intensive due to their 
inherent algorithmic complexity, such as protein folding and 
reconstructing evolutionary histories from molecular data; some of these 
are are known to be NP-hard (or harder) in finding an exact solution, and 
they often require approximations that are still algorithmically complex. 
Phylogenetic analysis attempts to reconstruct, from data generated from 
extant species, the evolutionary history of the group under study. Because 
phylogenies are crucial to answering fundamental questions in 
biomolecular evolution and practical ones in molecular biology, biologists 
have a strong interest in algorithms that enable resolution of ancient 
relationships. The reconstruction of large phylogenies could yield 
fundamental new insights into the process of evolution. The history is 
generally represented by a bifurcating (binary) tree, a phylogeny. 
 
Choosing calculations that correlate genotype to phenotype, and 
supporting the necessary further work to deploy the methods at petascale, 
appears relatively high risk for achieving petascale level in the given time 
frame. It is not clear that the associated data handling infrastructure 
required, much less the data mining algorithms to support it, would be 
available on the petascale facility at “first light”.  However, if successful, 
such calculations would be relatively high reward for addressing relevant 
biology problems, and indeed seem to be the next wave in computational 
biology. 

 
As to genomics generally, the explosion of genomic data from annotated gene 
sequences to whole genome assemblies, combined with mature algorithmic 
techniques for problems in comparative genomics, will drive computational 
needs even higher. Hence, high-performance computing techniques will 
become increasingly important for solving biologically-meaningful problems 
with realistic problem instances. 



 
As an illustration, Bader et al. have designed and implemented a high-
performance software suite, GRAPPA (Genome Rearrangement Analysis 
through Parsimony and other Phylogenetic Algorithms), with the goal to re-
implement, extend, and especially speed up, the breakpoint analysis 
(BPAnalysis) method of Sankoff and Blanchette.  In a recent analysis of a set 
of chloroplast genomes for 12 species of Campanulaceae on a 512-processor 
Linux supercluster, GRAPPA achieved a one-million-fold speedup over 
BPAnalysis—a speed-up that they have since increased to over one billion. 
This speedup was achieved through a combination of parallelism and high-
performance algorithm engineering.  Although such spectacular speedups will 
not always be realized, we suggest that many algorithmic approaches now in 
use in the biological, pharmaceutical, and medical communities can benefit 
tremendously from application of high-performance strategies and associated 
hardware platforms. Thus the risk of investment in petascale genomics 
application development is perhaps mitigated by the potentially high reward in 
practical applicability of results. 

 
• Customized patient care 
It is not too early to imagine that petascale computing may eventually support on-the-
fly individualized patient care, including calculations of optimal drug choice and 
dosage taking into account the interactions and reactions expected from the patient’s 
unique polymorphisms, as read from his or her “DNA fingerprint”. Likewise, 
comparisons of a patient’s tomogram or angiogram to a pre-recorded database of 
normal variants versus pathological cases are other examples of customized 
healthcare based on the parallel processing and integration of vast amounts of data.  

An example would involve solving inverse problems over multimodal imaging 
data (functional, structural). It would have real-time constraints and this in 
conjunction with resolution requirements may conspire to make such problems 
petascale. Additionally we expect the emergence of more expensive covariance 
models. This is considered a “novel” potential use of a petascale computer and breaks 
many of the traditional assumptions about how such a system should be deployed. 
 
Risk assessment for such an application area is difficult. There are clearly such 
calculations that could be sped up to enable soft real-time decision making. However, 
it is unclear whether or not the National Science Foundation would or should consider 
“on-demand” scheduling of the petascale facility for such a use. 

 
• Ecological component of earth system modeling  
There is an opportunity to use a petascale facility to enable adding ecological 
information, such as forest growth, to models of weather and climate. A grand 
challenge in geoscience is the addition of clouds to ecological modeling.  However, 
clouds and cloud-formation processes interact (in both directions) with the ecosystem. 
Ecological models attached to a high-resolution model of climate change (or ocean 
circulation, etc) that already has clear petascale applicability on its own may be a 
good path forward. It is debatable whether ecologists will have much say in the 



design or deployment of these models, unless they begin to collaborate with the 
climate modelers as soon as possible.  Ecologists have several embarrassingly parallel 
applications that can be “easily” scaled to a petascale system, including: 

• stochastic processes that need replication 
• parameter sensitivity analysis 
• heuristic optimization 

 
Such problems are extremely common in ecological application, as we elaborate here. 
 

1. Stochasticity: Simulation-based ecological models often incorporate 
demographic stochasticity (random birth/death/movement, etc), environmental 
stochasticity (random components of climate forcing, resource availability, 
etc), and/or genetic stochasticity (random mating, mutation, etc). Outcomes 
are thus stochastic as well, and ecologists wish to ask questions like, “What is 
the simulated probability that the population size will fall below X within 100 
years?” The simulation model must therefore be independently repeated 
(usually 100s-1000s of times) to generate a distribution of outcomes. 

 
2. Parameter sensitivity (or more generally, model sensitivity): The “true” 

parameters of ecological models are rarely known, and in fact there are often 
disagreements about the form of the equations governing those processes. 
Consequently, ecologists frequently want to characterize the sensitivity of 
outcomes to input parameter values and model assumptions. This also requires 
repeated simulation. 

 
3. Optimization: There are (at least) two distinct types of optimization questions 

that ecologists commonly ask. The first involves fitting parameters to 
observed data. In all but the most trivial models, it is impossible to use 
analytical or even simple approximating techniques to identify maximum 
likelihood estimates of parameters. Increasingly, ecologists are turning to 
stochastic optimization techniques such as simulated annealing, or the use of 
various implementations of Markov Chain Monte Carlo to simulate posterior 
probability distributions in a Bayesian framework. Secondly, applied 
ecological models often implement heuristic optimization algorithms as 
decision tools (e.g. identifying the optimal spatial configuration of a land 
reserve system, given some cost criterion). As with parameter estimation, the 
simpler algorithms used in the past have been shown to be deficient in 
complex settings, but more reliable methods require many repeated 
simulations and long run-times. There is a tremendous need for HPC solutions 
that can deliver results sufficiently quickly even for models involving many 
parameters, fine-scale spatial and temporation resolution, and stochastic 
processes. 

 
Putting this all together, it is clear that the compute time can be overwhelming when 
coupling one or more the above procedures with even a moderately complex 
ecological simulation model.  Specifically, some model examples include predicting 



evolution of a collection of interacting species, spatial spread of a disease, or the 
dynamics of a specific ecosystem. Taking the last example, imagine a regional-scale 
ecosystem model, the core of which is deployed as a small-scale HPC application 
(e.g. a single simulation that takes days to complete on a cluster with dozens of 
nodes). Indeed, the ATLSS group (http://www.atlss.org) based at UT/ORNL has 
spent ~10 years developing and refining a model that integrates a variety of complex 
and interacting submodels to simulate key biological and environmental components 
of the Florida Everglades; AFAIK, one submodel has already been parallelized to run 
on 60+ nodes. Even if a researcher demands just several hundred stochastic 
replications in such a simulation, performed for each of 100 possible configurations 
of a proposed reserve system, there would be significant benefit from hierarchically 
parallelization, to enable a 100k-processor system run (imagine a multi-hundred 
simultaneous, distributed instantiation of the ecosystem simulation, which itself might 
be a 64-node data-parallel application). Whether the envisioned petascale system 
even provides the right architecture for this application could be debated, but the 
point is that it does not require significant effort to scale up moderately sized 
ecological models to result in large computational needs, resulting in the ability to 
address relevant and interesting problems. 
 
Here, as in genomics, data integration would be critical to success. A candidate 
calculation would involve evolutionary correlations of networks and functions 
(phenotypes). In the worst case, such formulations may lead to NP Hard/Complete 
problems that would remain intractable even at the petascale level. To the extent that 
ecologists are able to refine mechanistic mathematical models in a way that is 
increasingly faithful to reality, one could easily conceive of petascale computing 
demands for simulating an entire ecosystem from its underlying biological and 
physical components. However, it is worth pointing out that the tradition in ecology is 
to simplify and scale back models—indeed, to err on the side of oversimplification; 
“realistic” models have long been mistrusted in favor of either highly abstract 
mechanistic (theoretical) models and/or simple phenomenological (statistical) models. 
In part this is for good reason: ecologists do not yet fully rely on their own more 
detailed mechanistic models (there being a lack of the ecological equivalents of 
physical laws, testing approximating models via experimentation and observation is 
difficult, and each real system seems to have its own unique features). This could in 
fact partly be historical artifact: few ecologists are even aware of the computational 
possibilities now afforded by HPC systems. In a sense, one might argue that 
developments in this area are limited due to apparent belief in computational 
obstacles that no longer exist—something we believe can be remedied through 
education and workshop opportunities. Given opportunities for making forays into 
developing complex ecological simulations despite uncertainties about the models, 
and having the ability to enhance model output with observed data, has the potential 
to lead to refinement and progress in this area. 
 
Choosing applications focused on the coupling of ecological with weather and 
climate models, and supporting them for further work for deployment at the petascale 
level, appears to be relatively medium risk for success in the given time frame.  Much 



of the risk is dependent on collocating two disciplines that normally do not interact 
collaboratively, to facilitate synergistic code co-development. Computational 
possibilities in this area have the potential for relatively high reward towards 
addressing interesting biology problems.  The path towards petascale is relatively 
straight forward, and the science questions of great relevance for better understanding 
of our environment by the ecological communities. 

 
• Stochastic agent-based population simulation for such areas as epidemiology 

dynamics and ecosystem dynamics  
A representative calculation in this area would involve agent based modeling of 
populations, applied to ecology as well as epidemiology, spatio-temporal, 
genotype/phenotype evolution. Such calculations could greatly enhance decision 
making for CDC/DHS. Further work is necessary to establish clear ability for such 
applications to go beyond the terascale level. However, it is almost certain that 
simulations can be scaled to petascale with some effort, and that the associated 
science to be gleaned would result in significant new insights into system behavior.  
Petascale computation could enable multiple computations to generate result 
ensembles and parameter sweeps for very detailed representation of large-scale 
systems. In the case of epidemiology, models may be used for real time response 
guidance to emerging challenges such as a pandemic or bioterror attack, where speed 
of execution of detailed models would be essential for effective response.   In the case 
of ecosystem dynamics, petascale computing could lead to an effective coupling of 
biology to factors in comprehensive global change models, an essential next step. 
 
This area is deemed high risk, as there are very limited calculations of this type even 
at the terascale level today.  However, the possibilities offer potentially high reward 
for answering science questions of national strategic importance. 

 
Models and Abstractions 
These example of candidate applications cut across several levels of model granularity 
and abstraction. As broad model taxonomy, some calculations such as molecular 
dynamics could be termed Classical Mechanics Models (CMM). Others, such as models 
of complex biological systems could be categorized as MM (Macroscopic Models 
including continuum, and coarse grained approaches), while genomic and ecological 
models could be termed DDM (Data Derived Models, following a Data to Knowledge 
pattern). A general classification of the above candidate applications, by this taxonomy, 
would be as follows:  
 

• Biomolecular Modeling as (CMM/MM) 
• Modeling Complex Biological Systems as (MM) 
• Genomics as (DDM) 
• Customized Patient Care as (DDM) 
• Ecological component of earth system modeling as (CMMDDM) 
• Infectious disease modeling as (DDM) 

 



The taxonomy will be useful for distinguishing infrastructure needs and for planning 
(next sections). 
 

In many of the problem classes just discussed, models either do not exist or are 
rudimentary, so that there is a clear need for additional research and development. For 
some other cases, coarse grained models need to be derived from existing fine grained 
models to reach the requisite scales. Thus there is a need and opportunity to apply 
maturing coarse graining technique (elaborated more in next section). Many applications 
integrate a range of model scales and phenomena; for these, methods for coupling models 
in efficient and accurate ways will be a crucial enabling technology. Classical examples 
are in DFT(Density Function Theory)/MD/Continuum/System. Petascale computing will 
enable scaling up science models from molecules to organisms to ecosystems, from ion 
transport to cardio-vascular simulation, and the like. There are issues of information flow 
across models and integrating data into models (model inference) that will manifest at 
this level of model size and complexity; these details need to be worked through in 
advance of deployment. The candidate applications discussed above have many 
algorithm and implementation issues, discussed next. 
 
II.B. Petascale Planning 
 
This group dealt with strategies to prepare for petascale computing, such as:  

1) The need for interdisciplinary collaboration  
2) Selection criteria to determine which interdisciplinary teams to sustain (given 
limited funds and resources),  
3) Software challenges on the way to petascale  
4) Community-wide organizational structures that may foster the long-term needs 
of petascale computing  

 
1. Need for Interdisciplinary Teams  

The petascale funding announcement has stimulated an intense and broad degree of 
interaction between computational biologists and computer scientists.  It is critical that 
this interaction be further sustained, both by NSF and NIH.  
 
Our goal is to build a focused R&D effort that simultaneously measurably impacts the 
quality of life across society, demonstrates leadership and vision in large scale computing 
for the biological sciences, and trains the next generation of engineers, scientists, and 
mathematicians. To realize our goals we need to formalize the notion of “petascale 
computing” into an activity worthy of computer scientists’ and biologists’ dedicated 
effort, and that, in turn, enables them to succeed in their research career and in their core 
mission of training students.   To create and strengthen a community, computer scientists 
and biologists, and their postdocs and students, should have the possibility of receiving 
travel and living support to visit each other or the petascale site for months at a time. 
 
Long term funding, with a minimum of 5 years, will be needed to ensure continuity, and 
it should cover all participants: computer scientists, biologists, programmers, and so on.  



This funding should encompass not only the research itself, but the sustained 
development of application and software libraries as they grow and require maintenance. 
 
Projects should specifically be constructed as interdisciplinary teams working together to 
deploy biology applications at petascale. It will be crucial to have models for 
performance analysis and scaling to show that an algorithm scales before implementing 
it. There is also need to develop models for quantifying uncertainty (accuracy) and effort 
put into quantifying performance and accuracy of heuristics (performance modeling); 
these activities perforce require interdisciplinary collaboration. 
 

2. Selection criteria for determining suitable petascale applications 
It is important that selection criteria lead to the formation of outstanding and productive 
collaborative teams focused on petascale activities. Historically, each 10-fold increase in 
parallelism required significant time investment, even when the raw compute capability 
was already available. Finally, since the petascale system will be a scarce resource during 
the first few years, its use must be managed transparently so it is in line with the selection 
criteria, and the needs of the funded efforts.  
 
Therefore it is important to understand which applications are “peta ready” today (as was 
partially addressed by the list of applications compiled by Working Group I), and which 
will be ready tomorrow. Moreover, one must also prepare for the emergence of novel 
classes of calculations and applications that may be as important, or more, and as suitable 
for petascale as those of today. 
 
One approach would be to distinguish among focused and large-scale development 
efforts and then apply the appropriate selection criteria and level of funding to each. For 
applications deemed “peta-scalable” by first-light (2011), the following criteria are 
important:  

a. qualifications of the team, size of the potential user base,  
b. suitability of the calculation for petascale resources,  
c. the balance between scientific merit and impact versus risk and feasibility.  

Specifically, some of the most peta-scalable applications  may be relatively low risk but 
lead to less pratical results while other applications likely to be of great biological 
significance are clearly at the edge of feasibility.  It is important that applications be 
evaluated along both dimensions of the risk-reward space and that the resulting portfolio 
mirror this spread.  
 
The mix of applications may thus include some that are nearly ready for the petascale, 
others of high importance that require additional software engineering and algorithm 
improvement, or yet others that require a build-up phase towards substantially more 
compute-intensive usage. Other types of diversity to consider for support should include 
both monolithic single applications that spread across the entire machine, and 
heterogeneous applications where different components of the applications workflow 
stress the computer architecture in different ways.  
 

3. Software challenges on the way to petascale  



An overwhelming consensus from the group, and indeed the workshop attendees across 
all groups, is that there is a need to increase support for theory, algorithm and code 
development, and software engineering to get the best science out of petascale and other 
high end machines.  
 
A possible format for such support would be a two stage competition for software 
engineering centers, with the first stage being planning grants and the second stage being 
full software engineering centers, with each center focusing on a particular application or 
class of applications.  The subject of these centers should include applications services as 
well as applications themselves, as both levels need considerable effort. There should be 
provisions for individual investigators who have distinct contributions to make, to 
contribute to the work of the centers without being an integral part of the centers. 
 
Issues of intellectual property for software rights will be critical to work out in advance, 
as intellectual property considerations could cripple the dissemination of associated 
advancements in software, and the development of heterogeneous computing 
environments.  One model for software intellectual property principles is embodied in the 
provisions for NIH software development grants. 
 
To ensure that the biological sciences community is positioned to take advantage of 
petascale computing capabilities, it is important to support efforts sustained efforts for the 
long term, i.e.  a “20 years” timeline. A minimum of 5 years is recommended to establish 
retooling of (large) software, in order to successfully to take advantage of what a 
petascale system has to offer.  Other software will be enabled more quickly, but to focus 
on only these would be irresponsible to the field of biology and the opportunities being 
presented by establishing a petascale facility. 
 
For support of applications, there is a need to invest in application libraries. With the help 
of source-to-source transformation (for example, Dan Quinlan's ROSE effort at LLNL) it 
is possible to implement semantic optimization of class libraries.  Efforts of this type can 
greatly facilitate biologists, enabling them to work in terms of abstractions they are 
comfortable with. Additionally, however, biologists can greatly benefit from learning key 
aspects of computer science in focused training sessions key to their application areas 
(see below.) 
 
Some problems pose challenges for hardware/algorithms (PME/Fast Fourier Transform) 
and may be suitable for more innovative algorithmic approaches/hardware. Several 
candidate applications do not fit into traditional numerical frameworks.  For example, 
they may not be floating-point operation intensive or perhaps have poor spatio-temporal 
locality. This underlines the importance of identifying the computational needs of the 
candidate applications in advance of deployment to insure petascale infrastructure is 
appropriate to their needs (which should be among the first activities of collaborative 
groups).  This issue is further addressed by the report of Working Group III below. 
 
Many of the applications identified by Working Group I require multiscale modeling, 
relevant to many areas of science and engineering including but not limited to 



computational biology (for example, the DoE has such a program for material science).  
In the case of computational biology, a grand challenge is to create multi-component, 
multi-dimensional, models spanning scales ranging from molecules to whole organ 
systems. There are various software and algorithmic challenges inherent in such models, 
in addition to the obvious physics/chemistry challenges of coupling across scale.  In 
terms of the former challenges, for example, managing the components in a petascale 
system, in particular, “cross-component optimization”, is an important issue.  That is, 
how to optimize multiple components taken together, rather than the classic approach of 
optimizing individual components separately. Thus, issues of load balancing, tolerating 
communication delays, memory hierarchy optimizations, etc., all increase complexity of 
the problem. All of these issues raise interesting research questions, as well as the need 
for software techniques needed to handle the optimizations.  These issues are related to 
work being performed by the common component architecture (CCA) community, but 
complimentary in this domain. Frameworks are needed to express such optimizations, 
and to enable application developers to express, in the form of “application performance 
meta data”, the information needed to sensibly and collectively optimize the multiple 
components handling the different parts of a composed multi-scale simulation. 
 
Scalability is a primary requirement for petascale; achieving it involves communications 
optimization, load balancing, asymptotic complexity analysis, and numerical accuracy 
assessment. When different models are composed, it is important that their numerical 
interactions be consistent, stable, etc. Models can not always be composed in a 
straightforward way, and it is important to understand their collective behavior and 
associated physical laws. Load balancing across different model; scales and data layouts 
is particularly hard and ill-understood at present. More research is needed in this domain, 
and this need is urgent in light of the number of likely processors in a petascale system 
(conservatively lower-bounded at 100,000). 
 
Many of the issues arising out of multi-scale models are potentially relevant to any 
application running on a multi-scale system. Tolerating communication delays, and 
handling load balancing are much more difficult at extreme levels of parallelism (105 to 
106 processors), because done incorrectly, serious waste in compute resources results.  
Thus, software techniques that facilitate latency tolerance will play an important role in 
helping ensuring scalability and efficiency of resources. 
 

4. People and Infrastructure organization issues on the path to petascale 
Strategies for long term preparation of potentially new petascale applications include the 
development of training programs, workshops, and summer schools, with focus on 
teaching the craft of creating efficient codes. In parallel, sufficient effort needs to be 
devoted to the development of biological application middleware including appropriate 
run time systems, frameworks, and libraries. Leveraging of existing and successful 
programs in these areas is highly desirable. 
 
There is an important need to pay careful attention to the development of a workforce 
pipeline for the applications software and engineering that are required.  Proposals to 
existing programs, such as IGERT (Integrative Graduate Education and Research 



Traineeship) are appropriate.  In addition, more focused training programs that solicit 
proposals from multidisciplinary teams, to jointly train students in high performance 
computing for biology, should be considered. We have a consensus that high 
performance computing is relatively neglected in computer science departments around 
the country, and that this is a problem that should be addressed by incentives to train 
students in high performance computing. 
 
 
There are also societal issues to be considered. Petascale computing is not simply an 
extrapolation of prior experience, but raises the stakes for application developers.  
Raising the scale of parallelism by a factor of 10 will compel some to rethink the 
algorithm, the implementation, or other software issues, including development costs.  
The impact of raising the level of parallelism by multiple orders of magnitude opens up 
considerable opportunity for the biology community to take advantage of. Taken from a 
different perspective, there are quite possibly unknown applications that become possible 
with the advent of petascale parallelism, which has the potential for opening up entirely 
new avenues for inquiry in Biology, Computer Science, Math, and Physics. These 
observations bring up two (possibly opposing) viewpoints. 
 

i. Petascale computing will start out as a small club gradually becoming more 
widespread over time, at which point we begin again with exaflop (1018) 
computing. It is important that a small number of likely success stories be chosen 
at the outset, endowed with the human resources needed to thrive, enabling the  
demonstration of the capabilities of the machine early on. 

 
ii. Appropriate training should be provided with a long term vision of developing 

new communities of users: to ensure that a critical mass of experts be available to 
respond to and disseminate information about new developments, and to develop 
new software techniques that will be useful to the computational biology 
community at large.  Summer camps and summer schools should be held to teach 
computational biologists the latest software techniques, and to teach computer 
scientists the latest trends in computational biology. This should be an ongoing 
process. Resources should be set aside for innovative ideas to blossom, be they in 
computer science, computational biology, applied mathematics and physics, or 
other related fields.  Small time users should be given the opportunity to use the 
full scale machine for trying out their ideas. 

 
We believe there is a middle way, embodied in the proposal above to select a limited but 
diverse portfolio of applications and teams, and that this can foster both viewpoints. The 
result should be some early success at “first light”, but also more high risk, high reward 
research and innovation that can lead to new uses of the petascale computational facility 
to address emerging questions in biology.  
 
 
II.C. Petascale Infrastructure 
 



This group dealt with identifying the computing, software, storage, networking, and 
people infrastructure needed for biology at the petascale level. A high-level take home 
message is “invest in people and software at (or preferably) beyond the level of the 
hardware investment!” 
 
Hardware infrastructure 
Biological problems of interest, for example those identified by Working Group I, are 
data intensive, compute intensive, communication intensive, in variant combinations, and 
one size does not fit all.  Biocomputing will therefore need multiple types of architectures 
and resources that map to the diverse hardware portfolio planned by NSF in their “tiers 1, 
2 and 3” planning. However a form of “market segmentation” needs to be done to 
determine which calculations should be done where and to influence some of these 
architectures to be designed with the special needs of biocomputing in mind. This is 
related to the idea from Working Group II that interdisciplinary teams need to start by 
understanding, modeling, and extrapolating future application requirements before 
embarking on ambitious code development projects.  
 
Several of the candidate applications described above by Working Group I will benefit 
from application-specific architectures (for example FPGAS can be programmed to do 
sequence comparisons very rapidly). Matching heterogeneity in applications and 
architectures across the NSF portfolio will be very important. It is expected that many 
candidate petascale applications in biology will be bandwidth intensive, with respect to 
local memory and with respect to inter-processor network bandwidth demands. In fact 
some key applications may turn out to be solved faster on what NSF terms “tier 2” 
systems than the petascale system, if those systems are better balanced in terms of 
memory and communications bandwidth per-processor. Therefore, it will be important to 
study computational characteristics of applications and associated hardware 
characteristics in advance to identify memory and communications bandwidth 
sensitivities. Likewise, it will be important to quantify what portions of candidate 
calculations are very computationally intensive and could be carried out on coprocessors 
(such FPGAs (Field Programmable Gate Arrays) and DSPs (Digital Signal Processors)), 
likely to become available in the same timeframe. Likewise, it will be important to 
understand which applications are very communications and I/O intensive and will stress 
machines in these dimensions. In the design of any petascale or “tier 2” I/O 
infrastructure, it will also be important to address data federation, data availability, and 
integrity. Also integration of data acquisition systems (sequencers, microarrays, imaging) 
needs to be addressed more than at present. 
 
Deeper considerations of the specific needs of compute intensive versus data intensive 
biology applications need to be made, as these may not be easily separated.  Data 
intensive applications require stable and scalable file systems, and infrastructure for 
moving the data in and out of the computer. When such an application is generating 
hundreds (or thousands) of petabytes, the infrastructure must support storing data, mining 
and analyzing data, moving data, archiving data, and visualizing data. 
 



By the same token, compute intensive calculations come in different types requiring (1) 
considerable amounts data, (2) considerable numbers of CPUs, (3) considerable amounts 
of memory (4) real time/wall clock constraints and (5) combinations of all the previous.  
Also, even compute intensive applications are not always computing “just one number” 
as the output. Rather many will generate petabytes or more of output data even if they did 
not consume a similar amount of input data to start with. Thus even these may require 
data intensive post processing even if the petaflop calculation is not by itself data 
intensive. 
 
A related issue, particularly in the cases of applications requiring the movement of vast 
amounts of data, concerns biology network issues.  Schemes need to be developed for 
petabyte data transfer via the internet. This may require upgrades to existing national 
backbone networks but also, quite seriously, this may involve Fedex ala NetFlix (order 
data via the Web for next day arrival).  
 
All of these challenges imply rethinking out-of-the-box around new architectures for 
biology computing, not just focus on refitting of existing biological problems to fit the 
petascale (or other high level) facility. 
 
Software Infrastructure 
Software costs more than hardware. A strong consensus of the workshop participants is 
that currently there is an imbalance in NSF support for scalable, robust, easy to use 
scientific software relative to proposed investments in hardware. Enabling petascale 
computing in biology will require software infrastructure enabling data analysis, mining 
and visualization. Analyzing massive output data and visualizing will then require more 
than just high floating-point capability by way of infrastructure; candidate petascale 
biology applications present tremendous issues associated with data handling (federation 
of data sources as for example expression, sequence, phenotype, etc.). These applications 
will stress I/O and file systems, and data federation solutions. Algorithms will need to be 
developed to deal with uncertainty in data, missing data, and erroneous data (sensitivity 
analysis).   Furthermore, there are two key issues involving interactivity around large-
scale data: (1) inordinate amounts of data to move, store, analyze requiring infrastructure 
supporting interaction (2) human beings often will need to be in the analysis loop. 
Additional challenges are associated with the connection of sensors and data streaming, 
as data access rates for I/O become very important. 
 
Associated networking software may not work without modification – For example 
TCP/IP has a 16 bit checksum and is subject to undetectable errors beyond 500 Gb packet 
transfers. ). Some applications will additionally bring real time constraints 
(epidemiology, customized care) and there will be a tradeoff between the model 
resolution as limited by these real-time constraints.   
 
Viable infrastructure will also need to include scalable codes, scalable algorithms, and 
scalable memory as well as lots of cpus as was expounded upon by Working Group II 
above.  
 



In addition to the significant work required in fundamental algorithms and load-
balancing, latency tolerance methods, etc., as described by Working Group II, significant 
efforts need to be focused in the areas of queuing and scheduling.  Currently, queuing and 
scheduling systems do not do a good job of handling different types of needs.  There is 
minimal ability to schedule high-performance computers to accommodate real-time 
constraints, respond to embedded sensors, be available on demand, and the like uses of 
interest to biologists.  Current scheduling policies primarily service throughput jobs.  
While it may be that this is also deemed to be the best way to manage the petascale 
system, there is significant doubt. Likely, increased programmer productivity, increased 
breakthrough science, and better response to the end-user may result from a less heavily 
loaded resource; one that is reserved for fewer truly petascale calculations, including 
perhaps some with real-time constraints, rather than the currently heavily loaded, highly 
utilized, NSF systems. 
 
Additional issues related to software involve fault tolerance issues, which are currently 
not being adequately addressed in designing software infrastructure for petascale.  Given 
likely state-of-the-art reliability and hardware failure rate trends, it is anticipated that one 
processor out of one hundred thousand (or a million) will fail every minute on a petascale 
machine. Who and how does one deal with such failures/minute?  By way of example 
using current semantics, an MPI global operation will block if even one processor fails to 
respond resulting in code hang-up. Applications need to be re-written to be fault-tolerant, 
something currently not even possible without updating current semantics of MPI to 
enable more tolerant of failures. Either vendors need to develop, or the community needs 
to develop (more likely the latter) fault tolerant APIs and associated semantics for global 
message-passing systems, in order to enable large parallel codes to be re-written in a 
fault-tolerant style. 
 
Generally speaking in high-performance computing (not just in biology), there is a dearth 
of scalable, robust, easy to use, interactive, etc. software tools. Many tools that do exist 
for the purpose are “professor-ware”, so there are lots of tools but not always with the 
required reliability or associated documentation. NSF could take the lead in finding 
mechanisms to fund enduring and stable tool efforts and in requiring periodic peer-review 
of ongoing tools projects. 
 
People Infrastructure 
People cost more than hardware. It is important there be a proportional investment in the 
people - faculty, staff, and students - who will support the necessary and vital efforts to 
obtain petascale computing levels.  Additionally, true peer collaboration is hard and 
circumstances must be fostered to overcome discipline silos. Echoing findings in 
Working Group II, interdisciplinary teams are necessary, involving biologists and 
computer scientists, but also other key disciplines (e.g., math, physics, sociology, 
economics, etc). Interdisciplinary teams may take the form of 2x2 collaborations as well 
as “service shop software models”. It is crucial these teams obtain early access to 
software and hardware at the teraflop level and higher on the path to petascale as it 
becomes available in order to prototype algorithms and software up to petaflop level 
computing. 
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